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Abstract. The nonresonant interaction of weakly nonlinear envelope magnetostatic solitons in
yttrium–iron-garnet films is theoretically studied. The nonlinear coefficients characterizing the
interaction between forward volume wave solitons in perpendicularly magnetized films as well as
the collision of backward volume wave bright solitons with surface wave dark solitons in in-plane-
magnetized films are calculated. It is shown that the manifestations of the interaction process are
experimentally observable using perpendicularly propagating solitons.

1. Introduction

In many physical systems it is possible to discover localized structures (solitons, kinks,
breathers, etc) [1–5]. In this connection, the observations of magnetostatic envelope solitons
in yttrium–iron-garnet (YIG) thin films should be especially singled out [6–18]. The low
damping in this medium allows one to observe the formation, propagation, and reflection
of magnetostatic envelope solitons even at room temperature. All theoretically predicted
creations [19], such as bright forward volume wave (FVW) [6–10], backward volume wave
(BVW) [8–14], and dark surface wave (SW) solitons [15] were experimentally observed.
Their formation and propagation are described in terms of the nonlinear Schrödinger (NLS)
equation [3].

At the same time, the effects concerning the interaction of solitons in YIG films have not
been sufficiently studied, apparently because of a weak theoretical base. The observations of
soliton collisions were made mainly in the case of BVW solitons in in-plane-magnetized
films [11]. It should be mentioned that only the interaction of single-space-dimensional
envelope solitons could be considered since two-space-dimensional soliton collisions lead
to their destruction [16]. In our recent articles we theoretically studied the soliton interaction
in bulk magnetic samples [20] as well as in YIG thin films for carrier wavenumbers k � 1/L (L
is the film thickness) [21]. However, in such media and for the above-mentioned wavenumber
range, even soliton propagation has not been experimentally observed and the studies [20,21]
were carried out to show the benefits of the method used (the reductive perturbation approach
[22,23]). Note that in the above-mentioned wavenumber range k � 1/L, YIG film also could
be considered as a bulk sample as long as such carrier waves do not ‘feel’ sample boundaries.
Thus the evolution of the nonlinear wave has to be described by the three-dimensional NLS
equation (see reference [21]), and apparently it is still impossible to fulfil experimentally the
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homogeneity criterion along the direction perpendicular to the film plane which is necessary
for creation of one-dimensional envelope solitons.

Another situation arises in the case of k � 1/L carrier wavenumbers considered in the
present article. Here the boundary conditions fix the third dimension, and the wave evolution
is described by the two-dimensional NLS equation. Moreover, it is possible to consider the
important limit k → 0 for which an analytical solution of the problem can be found.

At the same time, the magnetostatic solitons considered here (carrier wavenumber range
k � 1/L) have been studied extensively, and we suggest new experiments to verify the results
concerning soliton interaction obtained theoretically in the present article. In particular, the
parameters characterizing the interaction process are calculated, and it is shown that they are
experimentally measurable. It should be mentioned that the use of noncollinearly propagating
solitons is preferable for observing the effects of interaction between them. As will be shown
below, the interaction effects are nonzero even for perpendicularly propagating solitons, unlike
in the previously examined case [21]. Therefore it becomes possible to see simply the
interaction effects creating the solitons on neighbouring sides of a rectangular sample (see
figure 1).
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Figure 1. A schematic diagram showing the interaction of envelope solitons with group velocities
v1 and v2 and widths �1 and �2. δl1 and δl2 are the shifts caused by the interaction, L is the disc
thickness, H0 is the internal magnetic field, φ is the angle between the propagation directions.

2. Interaction of FVW solitons

Firstly we consider the collision of FVW solitons in perpendicularly magnetized films. The
stability of such solitons is experimentally confirmed in references [6–10]. Moreover, it was
shown that FVW solitons retain their shapes and velocities after interaction [17, 18]. On the
other hand, the well-known issues relating to the envelope soliton interaction, particularly the
shifts of phases and group velocities, have not been measured until now.

Let us consider a perpendicularly magnetized ferromagnetic film with unpinned surface
spins. Let H0 be an internal magnetic field (z-direction); �r indicates the radius vector lying in
the sample plane (x, y). It is well known that due to the modulation instability, longitudinally
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modulated magnetostatic envelope FVW solitons can be created in the film.
Using Landau–Lifshitz and magnetostatic equations together with the corresponding

boundary conditions, it is possible to investigate the nonlinear evolution of the magnetization
density �M and the total magnetic field �H in a sample. These equations have well-known forms:

d �M
dt

= −g[ �M × �H ] div( �H + 4π �M) = 0 rot �H = 0. (1)

Applying the ordinary perturbation approach, the nonlinear two-dimensional NLS equ-
ation is obtained [19] for propagation of the FVW envelope ϕ:
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where ϕ is defined by the expressions
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(3)

ω and �k are the carrier wave frequency and wave vector, respectively; �k is directed along
the x-axis; vg is the group velocity of the nonlinear FVW; D is a coefficient characterizing
nonlinear ‘self-action’; ωM = 4πgM0; M0 is the static magnetization; g is the gyromagnetic
ratio; and ωH = gH0. Let us note that the limit k → 0 is considered as long as kL � 1 (in
reference [21] another limit, kL � 1, was examined).

As can be easily seen from (3) (see also reference [19]), ω′′
xD < 0 and ω′′

yD > 0; thus
nonlinear FVW are unstable against longitudinal and stable against transverse modulations.
Therefore, the one-dimensional soliton solution with ∂2ϕ/∂y2 = 0, i.e. the solution of the
one-dimensional NLS equation
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is stable. The one-soliton solution of (4) has a well-known profile:

|ϕ| = |ϕ|max sech

(
x − vgt

�

)
� =

∣∣∣∣ω′′
x

D

∣∣∣∣
1/2 1

|ϕ|max

. (5)

The NLS equation (4), as well as equation (2), describes the evolution of a weakly
nonlinear FVW envelope with a definite carrier wavenumber and frequency, and direction
of the propagation velocity (along the x-axis). Consequently, the N -soliton solution may
represent an interaction of the envelope solitons with the same ω and k and propagating
along the x-direction. Thus the interaction of solitons propagating noncollinearly and even the
collision of the solitons propagating with opposite velocities [11,17,18] cannot be described by
the above-mentioned description. Therefore, we use in the present article the two-dimensional
extension [20,21] of the reductive perturbation approach [23] in order to study the stable FVW
envelope soliton interaction propagating noncollinearly in YIG thin films. Considering the
nonresonant interaction between two weakly nonlinear waves according to a well-established
procedure [20, 21, 23], we search for the solution of (1) as follows:
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Here �kln = l�k1 + n�k2; ωln = lω1 + nω2; ω1, �k1 and ω2, �k2 are the carrier frequencies and
wave vectors of the first and second nonlinear waves, respectively; %

(β)

ln = l%
(β)

1 + n%
(β)

2
are phase shifts induced by the interaction; ηi (i = 1, 2) and τ are ‘slow’ space-time
variables [20, 21, 23]:
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(
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∞∑
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εγψ
(γ )

i (η1, η2, τ )

)
τ = ε2t. (7)

�κi = �ki/ki (the longitudinal modulations are examined); vg1 and vg2 are the group velocities
of the first and second solitons, respectively. The corrections %

(β)

ln and φ
(γ )

i are induced
by the interaction and are manifested in the appearance of group velocity shifts δvgi of
the interacting solitons. ε is a formal small parameter connected with the smallness of the
interacting solitons’ amplitudes. In the final results, ε will enter in combination with the
soliton amplitude |ϕ|max ≡ |m+|max and, as long as the weakly nonlinear solution is examined
(|m+| � 1), |m+|max will play the role of a small parameter ε. In this connection it should
also be noted that in the experiments on magnetization of solitons in YIG films, the value of
|M+| is usually less than 10% of the static magnetization. Thus the weakly nonlinear approach
examined in the present article is valid for describing almost all experimental data.

Further, it is assumed that in the major approximation only the harmonics ϕ1 ≡ ϕ
(1)
10 and

ϕ2 ≡ ϕ
(1)
01 are nonzero. As follows from the calculations (see for details [20, 21, 23]), they are

solutions of the NLS equation (4). Thus we get generally an (N+N )-soliton solution describing
the nonresonant interaction of two solitary creations. Each of them can be considered as
an N -soliton solution outside of the interaction area. The interaction effects reduce to the
phase shifts and shifts of group velocities during the interaction. As was mentioned in our
previous article, the latter effect (the shift of the propagation velocity) could be experimentally
measured. Indeed the shift of the propagation velocity causes the shift of the interacted and
still noninteracted parts of the nonlinear wave (see figure 1). That is, these quantities are most
convenient for the experimental measurements. In figure 1 the shifts are indicated by δl1 and
δl2 for the first and second nonlinear waves, respectively. For instance, the shift of the first
soliton induced by the interaction with the second one can be simply presented in terms of the
following relations [20, 21, 23]:
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where φ is the angle between the propagation directions of the interacting nonlinear waves;
D1 is a nonlinear coefficient characterizing the influence of the second soliton upon the first
one while the interaction process is proceeding. After straightforward but rather complicated
calculations (in full analogy with references [20, 21]), we obtain the following expressions
for D1:
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For estimates we consider now the 1 + 1 solution, i.e. the interaction of two solitons with
sech-type profiles [3] (ϕ1 and ϕ2 are one-soliton solutions of the NLS equation (2)). Then, in
view of the following relations:
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expression (8) can be rewritten as follows:
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cosφ
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where �1 is the width of the first soliton.
Let us take the following parameters as estimates: |ϕ1|max = |ϕ2|max = 0.1; HM ≡

ωM/g = 1750 Oe; L = 10 µm, and H0 = 580 Oe. Then the width of the one-
soliton solution takes the value �1 � 0.06 cm and the propagation velocities are equal to
vg1 � vg2 � 7.5 × 107 cm s−1.

We have two restrictions on the values of the parameters of the problem:

(1) The internal static magnetic field should not be less than 0.3ωM/g. Otherwise the threshold
for three-magnon processes is reached and nonlinear wave creation will decay rapidly.

(2) As long as only the nonresonant interaction is considered, the following inequality should
be satisfied [23]: 1 − cosφ � ε (ε is of the order of the pulse amplitudes |ϕ1|max and
|ϕ2|max).

The angle dependence for the relative shift of the wave front δl1/�1 is presented in figure 2.
As we see, in the case where cosφ = −1 (i.e. interaction of solitons with opposite velocities),
the relative shift is small: δl1/�1 � −0.03. Besides this, it could not be directly seen and the
comparison of two experiments with and without the interaction is necessary (measuring the
corresponding delay time δt1 = δl1/vg1 � −0.025 ns). Therefore it is doubtful whether one
could see the manifestations of effects induced by the interaction with the second soliton. On
the other hand, e.g. for cosφ = 0.4, the relative shift δl1/�1 � 0.3; thus the shift is almost
commensurate with the soliton width and it can be directly observed experimentally.
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Figure 2. The angular dependence of the ratio δl1/�1. δl1 is the shift of the first soliton caused
by the interaction, �1 is the width of the soliton, φ is the angle between the group velocities of the
interacting solitons. The dashed line indicates the range of φ where the condition of nonresonant
character of the interaction is violated.
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The effect could be significantly increased by examining the (1 + N )-soliton solution,
i.e. the influence of the N -soliton impulse with envelope ϕ2 upon the one-soliton impulse
with envelope ϕ1. In this case the corresponding shift of the wave front of the first soliton
will increase at least N times (the case of N independent one-soliton impulses) while the
pulse power required for the creation of an N -soliton impulse should be (2N − 1)2 times
greater [3, 19]. It should be mentioned that if both nonlinear waves are one-soliton pulses,
then �1 � �2, while if the first and second nonlinear waves are one- and N -soliton impulses,
respectively, �2 is much larger than �1 in the case where |ϕ1|max ∼ |ϕ2|max . Consequently,
the shift of the wave front of the first soliton δl1 will be larger than the shift δl2.

In contrast to the case considered in reference [21], the shifts δl1 and δl2 are nonzero for
perpendicularly propagating solitons, as follows from expression (10). In particular, for the
1 + 1 solution and the above-chosen parameters, δl1/�1 � δl2/�2 � 0.05.

3. Interaction between bright and dark solitons

Let us consider now a most interesting case of interaction between different types of soliton,
particularly the collision between bright and dark solitons. For that purpose let us examine
the interaction of a nonlinear spin wave with carrier frequency and wavenumber ω1, �k1 with
a second one with the parameters ω2 and �k2 in in-plane-magnetized YIG film with unpinned
surface spins. Let us suppose that �k1 is parallel (BVW case) to the static magnetic field lying
in the film plane along the x-direction and that �k2 is perpendicular (y-direction) to the static
field (SW case). The propagation of such nonlinear waves out of the interaction area could be
described in terms of the same two-dimensional NLS equation (2) with the nonlinear coefficient
of ‘self-action’ being the same for both BVW and SW nonlinear waves [19]:
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We can also write down the expressions for propagation velocities and dispersion coefficients:
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for the SW case†. As can be easily seen from expressions (11)–(13), the following inequalities
hold for the BVW case: Dω′′

yB > 0 and Dω′′
xB > 0. This means that the BVW plane waves are

unstable against both longitudinal and transverse modulations and longitudinally modulated
BVW bright solitons could be formed [8–14] with a profile
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)
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D
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† We mention that for the SW case in the NLS equation (2) the term vg ∂ϕ/∂x should be replaced by vgS ∂ϕ2/∂y

because the carrier frequency of the SW is taken to be directed along �y and therefore the propagation velocity �vgS lies
along the same axis.
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Another situation arises for the SW case for which Dω′′
xS < 0 and Dω′′

yS < 0. As had
been predicted theoretically (see e.g. [2]) and observed experimentally [15], the dark solitons
could be created in this case with a profile as follows:
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+ i tanh
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where A denotes the contrast of the soliton. Taking A equal to 1 (see reference [15]), we can
rewrite |ϕ2|2 as the sum of the background and a sech2-type inverse moving bump:

|ϕ2|2 = |ϕ2|2max − |ϕ2|2max sech2

(
y − vgSt

�2

)
. (16)

Applying again the general approach [20, 21] for calculation of the nonlinear coefficient
characterizing the nonresonant interaction between the nonlinear BVW and SW, the following
expression was obtained:

�κ1
∂D1

∂ �k1

∣∣∣∣∣
k1,k2→0

= ωML. (17)

Note that as long as the angle φ between the propagation velocities of the interacting BVW
and SW solitons is equal to 90◦, only the nonlinear coefficient (17) is needed to calculate the
shift of the propagation velocities induced by the interaction, as follows from expression (8).
Then using (8), (16), and (17), one can simply derive the formula for the delay time .t1 (in
comparison with the time when the BVW propagates in the absence of the SW) of the BVW
bright soliton:

.t1

t1
= 4

ω0

ωH

|ϕ2|2max (18)

(t1 is the propagation time of the BVW soliton without interaction) and also the expression for
the relative shift of the wave front (see figure 1) could be obtained:

δl1

�1
= −8

ω0

ωH

�2

�1
|ϕ2|2max. (19)

At the same time, the overall delay for the SW dark soliton is equal to zero (as long as
the BVW bright soliton has zero background) and the shift of wave front is represented by the
same expression (19).

For the above-chosen values of the static and demagnetizing field, soliton amplitudes (see
section 2), and sample length along the x-direction d = 1 cm, the propagation velocities take
the following values: vgB = 3.8 × 107 cm s−1 and vgS = 1.1 × 108 cm s−1. One can also
calculate the propagation time for the BVW soliton, t1 = 28 ns, and the overall delay time of
the BVW soliton induced by the nonlinear interaction with the SW dark soliton, .t1 = 2.3 ns.
The latter can be compared with the BVW soliton pulse duration τ0 = 0.1 ns and it can be
concluded that the delay time will be easily observed experimentally.

One can also estimate the relative shift of the wave front of the BVW bright soliton
according to formula (19). For the above-chosen parameters, δl1/�1 � 0.6. Thus it could
also be observed experimentally.

4. Conclusions

A generalized approach for describing the interaction between noncollinearly propagating
nonlinear magnetostatic waves in YIG films is presented. The interaction between FVW
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solitons in perpendicularly magnetized films as well as the collision between bright BVW
solitons and dark SW solitons in in-plane-magnetized film are examined. It is also possible
to apply the present approach in order to describe the interaction of nonlinear waves in other
combinations. In particular, we can consider the interaction between: BVW solitons; SW dark
solitons; a BVW soliton with a BVW beam (a transversely modulated soliton); a BVW bright
beam with a SW dark beam (if the latter could be experimentally observed); etc.
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